Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Aug;13(8):749-65.
doi: 10.1002/hec.852.

Comparing alternative models: log vs Cox proportional hazard?

Affiliations
Comparative Study

Comparing alternative models: log vs Cox proportional hazard?

Anirban Basu et al. Health Econ. 2004 Aug.

Abstract

Health economists often use log models (based on OLS or generalized linear models) to deal with skewed outcomes such as those found in health expenditures and inpatient length of stay. Some recent studies have employed Cox proportional hazard regression as a less parametric alternative to OLS and GLM models, even when there was no need to correct for censoring. This study examines how well the alternative estimators behave econometrically in terms of bias when the data are skewed to the right. Specifically we provide evidence on the performance of the Cox model under a variety of data generating mechanisms and compare it to the estimators studied recently in Manning and Mullahy (2001). No single alternative is best under all of the conditions examined here. However, the gamma regression model with a log link seems to be more robust to alternative data generating mechanisms than either OLS on ln(y) or Cox proportional hazards regression. We find that the proportional hazard assumption is an essential requirement to obtain consistent estimate of the E(y|x) using the Cox model.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources