Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Aug;79(2):209-21.
doi: 10.1016/j.exer.2004.03.013.

Differential gene expression of early and late passage retinal pigment epithelial cells

Affiliations

Differential gene expression of early and late passage retinal pigment epithelial cells

Xue-Feng Wang et al. Exp Eye Res. 2004 Aug.

Abstract

We examined the gene expression profiles of retinal pigment epithelial (RPE) cells which were aged in vitro by repeated passage. RPE cells from human eyes were cultured to passage 3-5 (early passage) or 19-21 (late passage) and used to study gene expression profiles by cDNA microarray. Results from microarray analysis were further confirmed by real-time PCR. Microarray analysis showed gene expression changes among 588 known genes. The expression levels of 15 genes (2.6%) increased in late passage RPE cells, while 43 genes (7.3%) decreased using a two-fold criterion. These differentially expressed genes encompassed many functional classes. A small number of stress genes, such as clusterin, replication protein A and Ku80, were up-regulated. The down-regulated genes included many enzymes of energy and biomolecule metabolism as well as cell cycle proteins and cell adhesion proteins. Results from real-time PCR were generally consistent with microarray findings. The expression levels of the examined angiogenic factors were either unchanged or down-regulated. Comparing early (p=3-5) and late (p=9-12) passage RPE cells, several categories of differentially expressed genes were identified. However, there was no enhanced expression of known angiogenic factors.

PubMed Disclaimer

Publication types

MeSH terms

Substances