Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Oct;48(1):1-13.
doi: 10.1002/glia.20049.

Reversible disruption of tight junction complexes in the rat blood-brain barrier, following transitory focal astrocyte loss

Affiliations

Reversible disruption of tight junction complexes in the rat blood-brain barrier, following transitory focal astrocyte loss

Colin L Willis et al. Glia. 2004 Oct.

Abstract

Breakdown of the blood-brain barrier is a feature of acute and chronic neurodegenerative changes, yet the relationship between astrocytes and the mature barrier remains unclear. We studied this role of astrocytes in vivo using a gliotoxin and evaluated changes in three vascular tight junction markers. Male Fisher F344 rats given systemic 3-chloropropanediol showed astrocytic loss in the inferior colliculus from 12-24 h until the lesion was repopulated 8-28 days later. Within 6 h of astrocyte loss, microvessels in this area began to demonstrate a loss of the normal paracellular localization of the transmembrane proteins occludin and claudin-5 and cytoplasmic zonula occludens-1, which correlated with focal vascular leak of dextran (10 kDa) and fibrinogen. Platelet endothelial adhesion molecule-1 staining revealed that there was no loss of the endothelial lining. Between 4-8 days, severe downregulation of tight junction protein expression was observed, which subsequently returned over the same time period as astrocytes repopulated the lesion. Unexpectedly, dextran and fibrinogen leak from vessels had ceased at 6 days, well before the return of occludin and claudin-5 to appropriate paracellular domains. Control nonvulnerable cortical tissue showed no change in astrocyte morphology and tight junction expression over the same time course. Our data supports a primary role for astrocytic contact in the expression of occludin, claudin-5, and zonula occludens-1 in the mature brain vasculature in vivo. However, barrier integrity to dextran (10 kDa) and fibrinogen can be restored in the absence of astrocytes and tight junction proteins (occludin, claudin-5, and zonula occludens-1).

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources