Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Aug 25;292(8):943-51.
doi: 10.1001/jama.292.8.943.

Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations

Affiliations

Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations

Hartmut P H Neumann et al. JAMA. .

Erratum in

  • JAMA. 2004 Oct 13;292(14):1686

Abstract

Context: Germline mutations of the genes encoding succinate dehydrogenase subunits B (SDHB) and D (SDHD) predispose to paraganglioma syndromes type 4 (PGL-4) and type 1 (PGL-1), respectively. In both syndromes, pheochromocytomas as well as head and neck paragangliomas occur; however, details for individual risks and other clinical characteristics are unknown.

Objective: To determine the differences in clinical features in carriers of SDHB mutations and SDHD mutations.

Design, setting, and patients: Population-based genetic screening for SDHB and SDHD germline mutations in 417 unrelated patients with adrenal or extra-adrenal abdominal or thoracic pheochromocytomas (n = 334) or head and neck paragangliomas (n = 83), but without syndromic features, from 2 registries based in Germany and central Poland, conducted from April 1, 2000, until May 15, 2004.

Main outcome measures: Demographic and clinical findings with respect to gene mutation in SDHB vs SDHD compared with nonmutation carriers.

Results: A total of 49 (12%) of 417 registrants carried SDHB or SDHD mutations. In addition, 28 SDHB and 23 SDHD mutation carriers were newly detected among relatives of these carriers. Comparison of 53 SDHB and 47 SDHD total mutation carriers showed similar ages at diagnosis but differences in penetrance and of tumor manifestations. Head and neck paragangliomas (10/32 vs 27/34, respectively, P<.001) and multifocal (9/32 vs 25/34, respectively, P<.001) tumors were more frequent in carriers of SDHD mutations. In contrast, SDHB mutation carriers have an increased frequency of malignant disease (11/32 vs 0/34, P<.001). Renal cell cancer was observed in 2 SDHB mutation carriers and papillary thyroid cancer in 1 SDHB mutation carrier and 1 SDHD mutation carrier.

Conclusions: In contrast with SDHD mutation carriers (PGL-1) who have more frequent multifocal paragangliomas, SDHB mutation carriers (PGL-4) are more likely to develop malignant disease and possibly extraparaganglial neoplasias, including renal cell and thyroid carcinomas. Appropriate and timely clinical screening is recommended in all patients with PGL-1 and PGL-4.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms