Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Apr;262(4 Pt 2):H1068-74.
doi: 10.1152/ajpheart.1992.262.4.H1068.

Fatty acid oxidation and mechanical performance of volume-overloaded rat hearts

Affiliations

Fatty acid oxidation and mechanical performance of volume-overloaded rat hearts

Z el Alaoui-Talibi et al. Am J Physiol. 1992 Apr.

Abstract

Chronic volume overload was induced in 2-mo-old rats by surgical opening of the aortocaval fistula. Rats were killed 3 mo later and their hearts were atrially perfused. During the perfusions with 1.2 mM palmitate, mechanical performance of volume-overloaded hearts was significantly decreased both under conditions of a moderate work load and, mainly, after the clamp of the aortic outflow line. Respective O2 consumption rates as well as the rates of 14CO2 production from [U-14C]palmitate were decreased to the same extent. When 2.4 mM octanoate was used as the exogenous substrate, both the O2 consumption rates and the rates of CO2 production of volume-overloaded hearts became comparable to those of control hearts perfused with same substrate. Mechanical activity of volume-overloaded hearts returned to control values and remained stable during the entire perfusion period tested. Total tissue L-carnitine was decreased by approximately 30% in volume-overloaded hearts, which may suggest that palmitate oxidation has been limited at the level of carnitine-acylcarnitine translocase. However, our polarographic studies of the respiratory activity of isolated mitochondria indicated that the palmitoylcarnitine translocation proceeds normally. On the other hand, state 3 respiration of the mitochondria from volume-overloaded hearts supplemented with either palmitate or palmitate and L-carnitine was significantly lower than that of control ones. This may suggest that an alteration of the enzymes involved in long-chain fatty acid activation and/or long-chain fatty acyl transfer to L-carnitine has developed under conditions of chronic mechanical overloading of the heart.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources