Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Sep;92(3):1700-7.
doi: 10.1152/jn.00020.2004. Epub 2004 Apr 7.

Current flow in vibrissa motor cortex can phase-lock with exploratory rhythmic whisking in rat

Affiliations
Free article

Current flow in vibrissa motor cortex can phase-lock with exploratory rhythmic whisking in rat

Kurt F Ahrens et al. J Neurophysiol. 2004 Sep.
Free article

Abstract

Rats explore their environment with rhythmic sweeps of their mystacial vibrissae in the range of 5-15 Hz. We tested if vibrissa primary motor (M1) cortex produces electrical activity that locks to this behavioral output. Rats were trained to whisk in air in search of a food reward. The EMG of the mystacial pad served as a surrogate of vibrissa position, while chronically implanted, 16-channel Si-based probes provided a record of field potentials throughout the depth of vibrissa M1 cortex as well as vibrissa primary somatosensory (S1) cortex. The measured potentials were used to estimate the current source density along the radial axis. We observed that current flow throughout the depth of M1 cortex is coherent with the mystacial EMG, i.e., the two signals co-vary with a defined phase relation. This coherence persists after transection of the infraorbital branch (IoN) of the trigeminal nerve, which provides the sole sensory input from the vibrissae. Furthermore, current flow in vibrissa S1 cortex that is coherent with the mystacial EMG also persists after transection of the IoN, consistent with anatomical pathways between M1 and S1. In combination with a previous observation that rhythmic, intracortical microstimulation of vibrissa M1 cortex can drive normal whisking motion, the present data support the hypothesis that, in principle, M1 cortex can initiate motion of the vibrissae on a cycle-by-cycle basis.

PubMed Disclaimer

Comment in

Publication types

LinkOut - more resources