Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Sep;99(3):864-871.
doi: 10.1213/01.ANE.0000133000.65613.F5.

Bradykinin-induced pulmonary vasoconstriction is time and inducible nitric oxide synthase dependent in a peritonitis sepsis model

Affiliations

Bradykinin-induced pulmonary vasoconstriction is time and inducible nitric oxide synthase dependent in a peritonitis sepsis model

Lars G Fischer et al. Anesth Analg. 2004 Sep.

Abstract

In an isolated perfused lung model, bradykinin induced pulmonary vasoconstriction in rats made septic by the injection of lipopolysaccharide (LPS). To mimic the pathophysiology of sepsis in humans more closely, we investigated pulmonary endothelial injury in a peritonitis model (cecal ligation and perforation; CLP). Male Sprague-Dawley rats were randomly divided into nine groups (n = 6-8). LPS and CLP rats were compared after 6 h with and without treatment with a selective inhibitor of inducible nitric oxide synthase (iNOS), L-N(6)-(1-iminoethyl)-lysine. Time dependency was investigated in CLP-treated rats at 24 h. The pulmonary circulation was isolated and perfused with a constant flow after the rats' tracheas were intubated and ventilated. Bradykinin (1, 3, and 6 microg) was injected, and changes in perfusion pressure were measured. Lungs were harvested for Western blot analysis to determine the role of iNOS in pulmonary endothelial dysfunction. In contrast to CLP 24 h rats, dose-dependent bradykinin-induced pulmonary vasoconstriction was observed in LPS and CLP 6 h rats. Concomitant administration of L-N(6)-(1-iminoethyl)-lysine significantly attenuated this vasoconstriction in both groups. The iNOS protein was expressed in lung homogenates from LPS 6 h and CLP 6 h but not from CLP 24 h rats. Both sepsis models caused bradykinin-induced pulmonary vasoconstriction, with the CLP groups demonstrating a time dependency of this effect. In conjunction with the time-dependent decrease in iNOS protein, the attenuated bradykinin-induced vasoconstriction due to selective iNOS inhibition suggests an important role for iNOS in pulmonary endothelial injury for both sepsis models.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991;43:109–42.
    1. Bone RC. The pathogenesis of sepsis. Ann Intern Med 1991;115:457–69.
    1. Fischer LG, Horstman DJ, Hahnenkamp K, et al. Selective iNOS-inhibition attenuates acetylcholine and bradykinin-induced vasoconstriction in lipopolysaccharide-exposed rat lungs. Anesthesiology 1999;91:1724–32.
    1. Fischer LG, Horstman DJ, Hollmann MW, et al. Cyclooxygenase inhibitors attenuate bradykinin-induced vasoconstriction in septic isolated rat lungs. Anesth Analg 2000;90:625–31.
    1. Wichtermann KA, Baue AE, Chaundry IH. Sepsis and septic shock: a review of laboratory models and a proposal. J Surg Res 1980;29:189–201.

Publication types