Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jan;98(1):203-10.
doi: 10.1152/japplphysiol.00463.2004. Epub 2004 Aug 27.

A high-fat, refined-carbohydrate diet induces endothelial dysfunction and oxidant/antioxidant imbalance and depresses NOS protein expression

Affiliations
Free article

A high-fat, refined-carbohydrate diet induces endothelial dysfunction and oxidant/antioxidant imbalance and depresses NOS protein expression

Christian K Roberts et al. J Appl Physiol (1985). 2005 Jan.
Free article

Abstract

We tested whether consumption of a high-fat, high-sucrose (HFS) diet can affect endothelium-dependent relaxation, whether this precedes the development of diet-induced hypertension previously noted in this model, and whether it is mediated, in part, by changes in nitric oxide synthase (NOS) and/or NOS regulatory proteins. Female Fischer rats were fed either a HFS diet or standard low-fat, complex-carbohydrate chow starting at 2 mo of age for 7 mo. Vasoconstrictive response to KCl and phenylephrine was similar in both groups. Vasorelaxation to acetylcholine was significantly impaired in the HFS animals, and there were no differences in relaxation to sodium nitroprusside, suggesting that the endothelial dysfunction is due, at least in part, to nitric oxide deficiency. HFS consumption decreased protein expression of endothelial NOS in aorta, renal, and heart tissues, neuronal NOS in kidney, heart, aorta, and brain, and inducible NOS in heart and aorta. Caveolin-1 and soluble guanylate cyclase protein expression did not change, but AKT protein expression decreased in heart and aorta and increased in kidney tissue. Consumption of HFS diet raised brain carbonyl content and plasma hydrogen peroxide concentration and diminished plasma total antioxidant capacity. Because blood pressure, which is known to eventually rise in this model, was not as yet significantly elevated, the present data suggest that endothelial dysfunction precedes the onset of diet-induced hypertension. The lack of a quantitative change in caveolin-1 and soluble guanylate cyclase protein content indicates that alteration in these proteins is not responsible for the endothelial dysfunction. Thus nitric oxide deficiency combined with antioxidant/oxidant imbalance, appears to be a primary factor in the development of endothelial dysfunction in this model.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources