Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Apr 17;35(8):1371-84.
doi: 10.1021/jm00086a005.

Exploration of N-phosphonoalkyl-, N-phosphonoalkenyl-, and N-(phosphonoalkyl)phenyl-spaced alpha-amino acids as competitive N-methyl-D-aspartic acid antagonists

Affiliations

Exploration of N-phosphonoalkyl-, N-phosphonoalkenyl-, and N-(phosphonoalkyl)phenyl-spaced alpha-amino acids as competitive N-methyl-D-aspartic acid antagonists

C F Bigge et al. J Med Chem. .

Abstract

A series of N-substituted alpha-amino acids containing terminal phosphonic acid groups has been synthesized as potential N-methyl-D-aspartate (NMDA) receptor antagonists. NMDA receptor affinity was determined by displacement of a known ligand ([3H]CPP) from crude rat brain synaptic membranes; an antagonist action was demonstrated by the inhibition of glutamate-induced accumulation of [45Ca2+] in cultured rat cortical neurons. Receptor affinity was significantly correlated with antagonist activity (Figure 1). Moderate affinity (IC50 = 1-2 microM) was retained for analogues (31 and 32, Table I; and 59 and 66, Table II) with reduced flexibility in their phosphonate side chains and is consistent with entropy playing a role in determining receptor affinity. Modeling studies suggest a folded conformation that brings the distal phosphonic acid group into close proximity with the alpha-carboxylate is required for binding. Each of the active analogues possess entropy-limiting features (double bonds, phenyl rings) in their side chains that allows the superposition of their key NH2, alpha-COOH, and distal PO3H2 groups with those of known competitive antagonists. Affinity decreased for analogues with alpha-carbon substitution, presumably because the alpha-substituent inhibits the folding of these structures into a bioactive conformation and occupies receptor-excluded volume. A complete description of the NMDA antagonist pharmacophore model is provided in a companion paper.

PubMed Disclaimer

MeSH terms

LinkOut - more resources