Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Sep-Oct;22(5):327-32.
doi: 10.1002/cbf.1110.

Kupffer cell-derived prostaglandin E2 is involved in regulation of lipid synthesis in rat liver tissue

Affiliations

Kupffer cell-derived prostaglandin E2 is involved in regulation of lipid synthesis in rat liver tissue

Audrey M Neyrinck et al. Cell Biochem Funct. 2004 Sep-Oct.

Abstract

Our recent studies suggest that Kupffer cells play a role in the physiological regulation of lipid metabolism of the adjacent hepatocytes. In the present study, we have tested the hypothesis that inhibition of Kupffer cells decreases prostaglandin E(2) (PGE(2)) release inside liver tissue, a phenomenon contributing to lipid accumulation in hepatocytes. PGE(2) secretion as well as lipid synthesis were assessed in precision-cut liver slices (PCLS) from rats previously treated with Kupffer cell inhibitors (GdCl(3) 10 mg kg(-1) body wt, i.v. injection and glycine 5% in diet). In addition, lipid synthesis was assessed in primary rat hepatocytes cultured in the absence or presence of PGE(2) (0.01, 1 and 10 microM). Inhibition of Kupffer cell activity by GdCl(3) decreases PGE(2) secretion by PCLS and resulted in a higher lipid synthesis. Since incubation with PGE(2) over 48 h decreases lipid synthesis from acetate in cultured hepatocytes, we propose that the lower PGE(2) secretion linked to Kupffer cell inhibition, partly explains a higher rate of synthesis of lipids with a subsequent accumulation in liver tissue, as previously shown in fasted rats.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources