Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jul-Aug:80:127-31.
doi: 10.1562/2004-05-03-RA-156.1.

Effects of supplementary ultraviolet-B irradiance on maize yield and qualities: a field experiment

Affiliations

Effects of supplementary ultraviolet-B irradiance on maize yield and qualities: a field experiment

Wei Gao et al. Photochem Photobiol. 2004 Jul-Aug.

Abstract

Stratospheric ozone depletion has caused an increase in the amount of ultraviolet-B (UV-B) radiation reaching the earth's surface. Numerous investigations have demonstrated that the effect of UV-B enhancements on plants includes reduction in grain yield, alteration in species competition, susceptibility to disease and changes in plant structure and pigmentation. Many experiments examining UV-B radiation effects on plants have been conducted in growth chambers or greenhouses. It has been questioned whether the effect of UV-B radiation on plants can be extrapolated to field responses from indoor studies because of the unnaturally high ratios of UV-B/ultraviolet-A radiation (320-400 nm) and UV-B/photosynthetically active radiation (PAR) in many indoor studies. Field studies on UV-B radiation effect on plants have been recommended to use the UV and PAR irradiance provided by natural light. This study reports the growth and yield responses of a maize crop exposed to enhanced UV-B radiation and the UV-B effects on maize seed qualities under field conditions. Enhanced UV-B radiation caused a significant reduction in the dry matter accumulation and the maize yield in turn was affected. With increased UV-B radiation the flavonoid accumulation in maize leaves increased and the contents of chlorophyll a, b and (a + b) of maize leaves were reduced. The levels of protein, sugar and starch of maize seed decreased with enhanced UV-B radiation, whereas the level of lysine increased with enhanced UV-B radiation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources