Optimal information storage and the distribution of synaptic weights: perceptron versus Purkinje cell
- PMID: 15339654
- DOI: 10.1016/j.neuron.2004.08.023
Optimal information storage and the distribution of synaptic weights: perceptron versus Purkinje cell
Abstract
It is widely believed that synaptic modifications underlie learning and memory. However, few studies have examined what can be deduced about the learning process from the distribution of synaptic weights. We analyze the perceptron, a prototypical feedforward neural network, and obtain the optimal synaptic weight distribution for a perceptron with excitatory synapses. It contains more than 50% silent synapses, and this fraction increases with storage reliability: silent synapses are therefore a necessary byproduct of optimizing learning and reliability. Exploiting the classical analogy between the perceptron and the cerebellar Purkinje cell, we fitted the optimal weight distribution to that measured for granule cell-Purkinje cell synapses. The two distributions agreed well, suggesting that the Purkinje cell can learn up to 5 kilobytes of information, in the form of 40,000 input-output associations.
Similar articles
-
Feedforward inhibition controls the spread of granule cell-induced Purkinje cell activity in the cerebellar cortex.J Neurophysiol. 2007 Jan;97(1):248-63. doi: 10.1152/jn.01098.2005. Epub 2006 Oct 18. J Neurophysiol. 2007. PMID: 17050824
-
Background synaptic activity modulates the response of a modeled purkinje cell to paired afferent input.J Neurophysiol. 2005 Jan;93(1):237-50. doi: 10.1152/jn.00458.2004. Epub 2004 Aug 11. J Neurophysiol. 2005. PMID: 15306625
-
Silent synapses in a thalamo-cortical circuit necessary for song learning in zebra finches.J Neurophysiol. 2005 Dec;94(6):3698-707. doi: 10.1152/jn.00282.2005. Epub 2005 Aug 17. J Neurophysiol. 2005. PMID: 16107531
-
Synaptic memories upside down: bidirectional plasticity at cerebellar parallel fiber-Purkinje cell synapses.Neuron. 2006 Oct 19;52(2):227-38. doi: 10.1016/j.neuron.2006.09.032. Neuron. 2006. PMID: 17046686 Review.
-
Postnatal development and synapse elimination of climbing fiber to Purkinje cell projection in the cerebellum.Neurosci Res. 2005 Nov;53(3):221-8. doi: 10.1016/j.neures.2005.07.007. Epub 2005 Sep 1. Neurosci Res. 2005. PMID: 16139911 Review.
Cited by
-
Matched pre- and post-synaptic changes underlie synaptic plasticity over long time scales.J Neurosci. 2013 Apr 10;33(15):6257-66. doi: 10.1523/JNEUROSCI.3740-12.2013. J Neurosci. 2013. PMID: 23575825 Free PMC article.
-
Single granule cells excite Golgi cells and evoke feedback inhibition in the cochlear nucleus.J Neurosci. 2015 Mar 18;35(11):4741-50. doi: 10.1523/JNEUROSCI.3665-14.2015. J Neurosci. 2015. PMID: 25788690 Free PMC article.
-
Local interneurons regulate synaptic strength by retrograde release of endocannabinoids.J Neurosci. 2006 Sep 27;26(39):9935-43. doi: 10.1523/JNEUROSCI.0958-06.2006. J Neurosci. 2006. PMID: 17005857 Free PMC article.
-
How connectivity, background activity, and synaptic properties shape the cross-correlation between spike trains.J Neurosci. 2009 Aug 19;29(33):10234-53. doi: 10.1523/JNEUROSCI.1275-09.2009. J Neurosci. 2009. PMID: 19692598 Free PMC article.
-
Differential role of pre- and postsynaptic neurons in the activity-dependent control of synaptic strengths across dendrites.PLoS Biol. 2019 Jun 5;17(6):e2006223. doi: 10.1371/journal.pbio.2006223. eCollection 2019 Jun. PLoS Biol. 2019. PMID: 31166943 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources