Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Sep;15(9):2429-39.
doi: 10.1097/01.ASN.0000138237.42675.45.

RhoA activation mediates phosphatidylinositol 3-kinase-dependent proliferation of human vascular endothelial cells: an alloimmune mechanism of chronic allograft nephropathy

Affiliations

RhoA activation mediates phosphatidylinositol 3-kinase-dependent proliferation of human vascular endothelial cells: an alloimmune mechanism of chronic allograft nephropathy

Stéphanie Coupel et al. J Am Soc Nephrol. 2004 Sep.

Abstract

HLA class I ligation on graft endothelial cells (EC) has been shown to promote graft arteriosclerosis and chronic allograft nephropathy. This study investigated transcriptional and functional changes mediated by anti-HLA antibodies (Ab), developed by transplant recipient, on vascular renal EC. For mimicking interactions that occur between alloantibodies and graft endothelium, HLA-typed primary cultures of human EC were incubated in vitro in the presence of monomorphic or polymorphic anti-HLA class I Ab. Gene expression analysis identified the upregulation of several molecules involved in cell signaling and proliferation, including the GTP-binding protein RhoA. It was demonstrated further that HLA class I ligation on EC induced a rapid translocation of RhoA to the cell membrane associated with F-actin stress fiber formation and cytoskeleton reorganization. Western blot analysis showed that anti-HLA class I Ab induced, in addition to RhoA, the activation of phosphatidylinositol 3-kinase, reflected by the phosphorylation of Akt (Ser473) and GSK3beta (Ser9), in EC. C3 exoenzyme, an inhibitor of RhoA, inhibited RhoA translocation in response to HLA class I ligation and reduced phosphatidylinositol 3-kinase activation. EC proliferation and cell cycle progression, examined by 5,6-carboxyfluorescein diacetate succinimidyl ester staining, demonstrated that anti-HLA-induced EC proliferation was efficiently prevented by the 3-hydroxy-3-methylglutaryl CoA reductase inhibitor simvastatin (0.1 micromol/L) through inhibition of RhoA geranylgeranylation. Taken together, these findings support the conclusion that RhoA is a key mediator of signaling pathways that lead to cytoskeletal reorganization and EC proliferation in response to alloantibodies that bind to HLA class I and demonstrate the specific and potent inhibitory effect of simvastatin on allostimulated EC growth.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources