Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Aug;91 Suppl 2(Suppl 2):S24-30.
doi: 10.1038/sj.bjc.6602064.

Diagnosis and management of drug-associated interstitial lung disease

Affiliations
Review

Diagnosis and management of drug-associated interstitial lung disease

N L Müller et al. Br J Cancer. 2004 Aug.

Abstract

Symptoms of drug-associated interstitial lung disease (ILD) are nonspecific and can be difficult to distinguish from a number of illnesses that commonly occur in patients with non-small-cell lung cancer (NSCLC) on therapy. Identification of drug involvement and differentiation from other illnesses is problematic, although radiological manifestations and clinical tests enable many of the alternative causes of symptoms in advanced NSCLC to be excluded. In lung cancer patients, high-resolution computed tomography (HRCT) is more sensitive than a chest radiograph in evaluating the severity and progression of parenchymal lung disease. Indeed, the use of HRCT imaging has led to the recognition of many distinct patterns of lung involvement and, along with clinical signs and symptoms, helps to predict both outcome and response to treatment. This manuscript outlines the radiology of drug-associated ILD and its differential diagnosis in NSCLC. An algorithm that uses clinical tests to exclude alternative diagnoses is also described.

PubMed Disclaimer

Figures

Figure 1
Figure 1
High-resolution CT images demonstrating radiology of drug-associated ILD. (A) A 77-year-old man with diffuse alveolar damage secondary to amidarone; note the extensive bilateral ground-glass opacities, airspace consolidation and bilateral pleural effusions. (B) A 36-year-old woman with hypersensitivity pneumonitis secondary to sertraline; note the extensive bilateral ground-glass opacities and lobular areas of air trapping (arrows). (C) A 69-year-old man with BOOP-like reaction to amiodarone; note the mild reticulation and bilateral areas of consolidation and ground-glass opacities in a predominantly peribronchial distribution. (D) A 47-year-old man with NSIP reaction to bleomycin; note the extensive bilateral ground-glass opacities with mild superimposed reticulation. (E) A 47-year-old man with eosinophilic pneumonia reaction to dilantin; note the patchy bilateral areas of consolidation involving the peripheral regions of the upper lobes.
Figure 2
Figure 2
Diagnostic algorithm of gefitinib-associated ILD in Japanese patients with NSCLC.

Similar articles

Cited by

References

    1. Abid SH, Malhotra V, Perry MC (2001) Radiation-induced and chemotherapy-induced pulmonary injury. Curr Opin Oncol 13: 242–248 - PubMed
    1. American Thoracic Society (2002) American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias. This joint statement of the American Thoracic Society (ATS), and the European Respiratory Society (ERS) was adopted by the ATS Board of Directors, June 2001 and by The ERS Executive Committee, June 2001. Am J Respir Crit Care Med 165: 277–304 - PubMed
    1. Aviram G, Yu E, Tai P, Lefcoe MS (2001) Computed tomography to assess pulmonary injury associated with concurrent chemo-radiotherapy for inoperable non-small cell lung cancer. Can Assoc Radiol J 52: 385–391 - PubMed
    1. Barlesi F, Villani P, Doddoli C, Gimenez C, Kleisbauer JP (2004) Gemcitabine-induced severe pulmonary toxicity. Fundam Clin Pharmacol 18: 85–91 - PubMed
    1. Baughman RP, Lower EE, Lynch JP (1994) Treatment modalities for sarcoidosis. Clin Pulm Med 1: 223–231

MeSH terms