Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Oct;182(2-3):119-25.
doi: 10.1007/s00203-004-0674-4. Epub 2004 Aug 31.

Overproduction of NAD+ and 5'-inosine monophosphate in the presence of 10 microM Mn2+ by a mutant of Corynebacterium ammoniagenes with thermosensitive nucleotide reduction (nrd(ts)) after temperature shift

Affiliations

Overproduction of NAD+ and 5'-inosine monophosphate in the presence of 10 microM Mn2+ by a mutant of Corynebacterium ammoniagenes with thermosensitive nucleotide reduction (nrd(ts)) after temperature shift

Bouziane Abbouni et al. Arch Microbiol. 2004 Oct.

Abstract

Corynebacterium ammoniagenes strain CH31 is thermosensitive due to a mutation in nucleotide reduction ( nrd(ts)). The strain was examined for nucleotide overproduction upon shifting the culture temperature to a range of elevated temperatures. No overproduction of NAD(+) was detected in the control maintained at 27 degrees C whereas NAD(+) was accumulated extracellularily by strain CH31 at 37 degrees C and at 40 degrees C. As a result of the temperature shift, division-inhibited cells displayed only limited elongation. This is a characteristic morphological feature of cell-cycle-arrested coryneform bacteria. Ribonucleotide reductase (RNR) activity was inactivated immediately after the temperature shift in the NAD(+)-proficient cultures, leading presumably to an exhaustion of deoxyribonucleotide pools and impairment of DNA replication. In contrast to the low extracellular accumulation of NAD(+), at the non-permissive temperature of 35 degrees C a distinct capacity for intracellular nucleotide overproduction was revealed by a new method using nucleotide-permeable cells. The approach of shifting the culture temperature was applied successfully to the overproduction of taste-enhancing nucleotides in the presence of 10 microM Mn(2+). Concomitant with a dramatic loss of viability, the thermosensitive mutant CH31 accumulated 5.3 g 5'-inosine monophosphate per liter following the addition of hypoxanthine as precursor for the salvage pathway.

PubMed Disclaimer

Publication types

LinkOut - more resources