Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Sep 6;1674(1):60-7.
doi: 10.1016/j.bbagen.2004.05.006.

Evidence for differences in the metabolism of saxitoxin and C1+2 toxins in the freshwater cyanobacterium Cylindrospermopsis raciborskii T3

Affiliations

Evidence for differences in the metabolism of saxitoxin and C1+2 toxins in the freshwater cyanobacterium Cylindrospermopsis raciborskii T3

Francesco Pomati et al. Biochim Biophys Acta. .

Abstract

The activity of paralytic shellfish poisoning (PSP) toxins biosynthetic enzymes was assayed in the cyanobacterium Cylindrospermopsis raciborskii T3 after inhibiting protein synthesis with chloramphenicol (CAM). The production of C1+2 and saxitoxin (STX) was sensitive to CAM with STX levels decreasing by 70% after 24-h exposure to the antibiotic. PSP toxin production was strongly promoted by arginine supplementation, with a maximum 476% increase in intracellular STX concentrations after 24-h exposure to 10 mM of the amino acid. However, arginine had no stimulating effect on PSP toxin levels if supplemented in combination with CAM at 10 microg l(-1). Addition of agmatine and proline to C. raciborskii T3 cultures in the presence of 10 microg l(-1) CAM increased C1+2 toxins levels, while having a negative or no effect on STX accumulation. In vitro, PSP toxin levels increased naturally in cyanobacterial extracts, with CAM and arginine having no influence on either C1+2 or STX synthesis. The evidence presented in this study suggests a possible difference between the metabolism of STX and the C1+2 toxins and indicated a high turnover rate of STX biosynthetic enzymes in C. raciborskii T3.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources