Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Sep 14;99(1):83-101.
doi: 10.1016/j.jconrel.2004.06.018.

Poly(N-vinylpyrrolidone)-block-poly(D,L-lactide) as a new polymeric solubilizer for hydrophobic anticancer drugs: in vitro and in vivo evaluation

Affiliations

Poly(N-vinylpyrrolidone)-block-poly(D,L-lactide) as a new polymeric solubilizer for hydrophobic anticancer drugs: in vitro and in vivo evaluation

D Le Garrec et al. J Control Release. .

Abstract

The majority of novel anticancer drugs developed to date are intended for parenteral administration. Paradoxically, most of these drugs are water-insoluble, delaying their clinical development. A common approach to confering water solubility to drugs is to use amphiphilic, solubilizing agents, such as polyethoxylated castor oil (e.g., Cremophor EL, CrmEL). However, these vehicles are themselves associated with a number of pharmacokinetic and pharmaceutical concerns. The present work is aimed at evaluating a novel polymeric solubilizer for anticancer drugs, i.e., poly(N-vinylpyrrolidone)-block-poly(D,L-lactide) (PVP-b-PDLLA). This copolymer self-assembles in water to yield polymeric micelles (PM) that efficiently solubilize anticancer drugs, such as paclitaxel (PTX), docetaxel (DCTX), teniposide (TEN) and etoposide (ETO). A PM-PTX formulation was evaluated, both, in vitro on three different cancer cell lines and in vivo for its safety, pharmacokinetics, biodistribution and antitumor activity. In vitro, cytotoxicity studies revealed that the drug-loaded PM formulation was equipotent to the commercial PTX formulation (Taxol). In the absence of drug, PVP-b-PDLLA with 37% DLLA content was less cytotoxic than CrmEL. In vivo, acute toxicity was assessed in mice after a single injection of escalating dose levels of formulated PTX. PM-PTX was well tolerated and the maximum tolerated dose (MTD) was not reached even at 100 mg/kg, whereas the MTD of Taxol was established at 20 mg/kg. At 60 mg/kg, PM-PTX demonstrated greater in vivo antitumor activity than Taxol injected at its MTD. Finally, it was shown in mice and rabbits that the areas under the plasma concentration-time curves were inversely related to PM drug loading.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources