Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Sep 24;1021(2):241-7.
doi: 10.1016/j.brainres.2004.06.064.

Anti-apoptotic and pro-apoptotic effect of NEPP11 on manganese-induced apoptosis and JNK pathway activation in PC12 cells

Affiliations
Free article

Anti-apoptotic and pro-apoptotic effect of NEPP11 on manganese-induced apoptosis and JNK pathway activation in PC12 cells

Yoko Hirata et al. Brain Res. .
Free article

Abstract

Neurite outgrowth-promoting prostaglandins (NEPPs), cyclopentenone prostaglandin derivatives, are found to be neurotrophic. These small organic compounds promote neurite outgrowth of PC12 cells and dorsal root ganglion explants in the presence of nerve growth factor, and prevent neuronal cell death of HT22 cells and cortical neurons induced by various stimuli. In this study, we examined whether NEPP11 prevents manganese-induced apoptosis of PC12 cells. NEPP11 (5 microM) attenuated manganese-induced DNA fragmentation by approximately 50%. In addition, NEPP11 partially prevented manganese-induced c-Jun phosphorylation and c-Jun N-terminal kinase (JNK) phosphorylation determined by Western blotting. Inhibition of the JNK signaling pathway by NEPP11 appeared to be selective, because NEPP11 did not inhibit manganese-induced activation of p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase1/2 (ERK1/2), MEK1/2 and p70 S6 kinase (p70S6K) in PC12 cells. In contrast, NEPP11 alone was toxic at higher concentrations (>10 microM) producing DNA fragmentation and activation of the JNK pathway. Molecular modifications of NEPP11 may strengthen its inhibitory effects on the JNK pathway while preventing its cytotoxicity, and thus may become a useful small molecule reagent for the treatment of manganese toxicity and other similar neurodegenerative processes.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources