Dynamical analysis of regulatory interactions in the gap gene system of Drosophila melanogaster
- PMID: 15342511
- PMCID: PMC1471003
- DOI: 10.1534/genetics.104.027334
Dynamical analysis of regulatory interactions in the gap gene system of Drosophila melanogaster
Abstract
Genetic studies have revealed that segment determination in Drosophila melanogaster is based on hierarchical regulatory interactions among maternal coordinate and zygotic segmentation genes. The gap gene system constitutes the most upstream zygotic layer of this regulatory hierarchy, responsible for the initial interpretation of positional information encoded by maternal gradients. We present a detailed analysis of regulatory interactions involved in gap gene regulation based on gap gene circuits, which are mathematical gene network models used to infer regulatory interactions from quantitative gene expression data. Our models reproduce gap gene expression at high accuracy and temporal resolution. Regulatory interactions found in gap gene circuits provide consistent and sufficient mechanisms for gap gene expression, which largely agree with mechanisms previously inferred from qualitative studies of mutant gene expression patterns. Our models predict activation of Kr by Cad and clarify several other regulatory interactions. Our analysis suggests a central role for repressive feedback loops between complementary gap genes. We observe that repressive interactions among overlapping gap genes show anteroposterior asymmetry with posterior dominance. Finally, our models suggest a correlation between timing of gap domain boundary formation and regulatory contributions from the terminal maternal system.
Copyright 2004 Genetics Society of America
Similar articles
-
Canalization of gene expression in the Drosophila blastoderm by gap gene cross regulation.PLoS Biol. 2009 Mar;7(3):e1000049. doi: 10.1371/journal.pbio.1000049. Epub 2009 Mar 10. PLoS Biol. 2009. PMID: 19750121 Free PMC article.
-
Gap genes and gradients--the logic behind the gaps.Bioessays. 1991 Jun;13(6):261-8. doi: 10.1002/bies.950130602. Bioessays. 1991. PMID: 1679987 Review.
-
Gene circuit analysis of the terminal gap gene huckebein.PLoS Comput Biol. 2009 Oct;5(10):e1000548. doi: 10.1371/journal.pcbi.1000548. Epub 2009 Oct 30. PLoS Comput Biol. 2009. PMID: 19876378 Free PMC article.
-
A logical analysis of the Drosophila gap-gene system.J Theor Biol. 2001 Jul 21;211(2):115-41. doi: 10.1006/jtbi.2001.2335. J Theor Biol. 2001. PMID: 11419955
-
Alternative epigenetic states understood in terms of specific regulatory structures.Ann N Y Acad Sci. 2002 Dec;981:135-53. Ann N Y Acad Sci. 2002. PMID: 12547678 Review.
Cited by
-
Multifaceted effects on even-skipped transcriptional dynamics upon Krüppel dosage changes.Development. 2024 Mar 1;151(5):dev202132. doi: 10.1242/dev.202132. Epub 2024 Mar 4. Development. 2024. PMID: 38345298 Free PMC article.
-
Modeling of gap gene expression in Drosophila Kruppel mutants.PLoS Comput Biol. 2012;8(8):e1002635. doi: 10.1371/journal.pcbi.1002635. Epub 2012 Aug 23. PLoS Comput Biol. 2012. PMID: 22927803 Free PMC article.
-
Distance measurements via the morphogen gradient of Bicoid in Drosophila embryos.BMC Dev Biol. 2010 Aug 2;10:80. doi: 10.1186/1471-213X-10-80. BMC Dev Biol. 2010. PMID: 20678215 Free PMC article.
-
Quantitative analysis of the Drosophila segmentation regulatory network using pattern generating potentials.PLoS Biol. 2010 Aug 17;8(8):e1000456. doi: 10.1371/journal.pbio.1000456. PLoS Biol. 2010. PMID: 20808951 Free PMC article.
-
Making models match measurements: model optimization for morphogen patterning networks.Semin Cell Dev Biol. 2014 Nov;35:109-23. doi: 10.1016/j.semcdb.2014.06.017. Epub 2014 Jul 9. Semin Cell Dev Biol. 2014. PMID: 25016297 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous