Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004;22(5):669-74.
doi: 10.1634/stemcells.22-5-669.

Generation of tyrosine hydroxylase positive neurons from human embryonic stem cells after coculture with cellular substrates and exposure to GDNF

Affiliations

Generation of tyrosine hydroxylase positive neurons from human embryonic stem cells after coculture with cellular substrates and exposure to GDNF

Kimberley A Buytaert-Hoefen et al. Stem Cells. 2004.

Abstract

Tyrosine hydroxylase (TH)-positive neurons were generated from human embryonic stem (hES) cells by coculturing on astrocytes or PA6 stromal cells. After 3 to 4 weeks in culture, TH-positive cells with neuronal morphology developed. Coculture with astrocytes from the embryonic striatum produced a larger number of TH-positive cells than did coculture with astrocytes from embryonic mesencephalon (329 +/- 149 versus 33 +/- 16 TH-positive cells per well, p < .05). In other experiments using PA6 cells as a substrate, glial-derived neurotrophic factor (GDNF) was added to the media of differentiating hES cells, and this led to a doubling of the number of TH-positive cells (PA6: 443 +/- 105 TH-positive cells per well versus PA6 + GDNF: 934 +/- 136, p < .05). We conclude that substrates of striatal astrocytes and PA6 cells can promote differentiation of human embryonic stem cells to a TH-positive phenotype and that GDNF can increase the number of cells expressing that phenotype.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources