Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Apr;72(4):1401-6.
doi: 10.1152/jappl.1992.72.4.1401.

Influence of electrical stimulation on the morphological and metabolic properties of paralyzed muscle

Affiliations

Influence of electrical stimulation on the morphological and metabolic properties of paralyzed muscle

T P Martin et al. J Appl Physiol (1985). 1992 Apr.

Abstract

Selected morphological and metabolic properties of single fibers were studied in biopsy samples from the tibialis anterior of normal control and spinal cord-injured (SCI) subjects. In the SCI subjects, one muscle was electrically stimulated progressively over 24 wk, in 6-wk blocks for less than or equal to 8 h/day, while the contralateral muscle remained untreated. The percentage of fibers classified as type I [qualitative alkaline preincubation myofibrillar adenosinetriphosphatase (ATPase)] was significantly less in the unstimulated paralyzed muscles than in the muscles of normal control subjects. Electrical stimulation increased the proportion of type I fibers in the SCI subjects. For both type I and type II fibers, the cross-sectional area, activities of myofibrillar ATPase and succinate dehydrogenase, and the capillary-to-fiber ratio were also significantly less in the paralyzed muscles than in the normal control muscles. Electrical stimulation increased only the activity of succinate dehydrogenase in both fiber types of the SCI subjects. These data are discussed in relation to the electromechanical properties of the respective muscles described in an accompanying paper (J. Appl. Physiol. 72: 1393-1400, 1992). In general, the electrical stimulation protocol used in this study enhanced the oxidative capacity and endurance properties of the paralyzed muscles but had no effect on fiber size and strength.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources