Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Sep-Oct;20(5):369-82.
doi: 10.1002/dmrr.488.

Fructose-mediated non-enzymatic glycation: sweet coupling or bad modification

Affiliations
Review

Fructose-mediated non-enzymatic glycation: sweet coupling or bad modification

Casper G Schalkwijk et al. Diabetes Metab Res Rev. 2004 Sep-Oct.

Abstract

The Maillard reaction is a process in which reducing sugars react spontaneously with amino groups in proteins to advanced glycation end products (AGEs). Although an elevated level of glucose had been thought to play a primary role in the Maillard reaction, on a molecular basis, glucose is among the least reactive sugars within biological systems. The formation of AGEs is now also known to result from the action of various metabolites other than glucose, which are primarily located intracellularly and participate in the non-enzymatic glycation reaction at a much faster rate, such as fructose, trioses and dicarbonyl compounds. In this review, we considered the glycation reaction with particular attention to the potential role of fructose and fructose metabolites. The two sources for fructose are an exogenous supply from the diet and the endogenous formation from glucose through the aldose reductase pathway. Despite its approximately eightfold higher reactivity, the contribution of extracellular glycation by fructose is considerably less than that by glucose, because of the low plasma concentration of fructose (5 mmol/L glucose vs 35 micro mol/L fructose). Intracellularly, fructose is elevated in a number of tissues of diabetic patients in which the polyol pathway is active. In the cells of these tissues, the concentrations of fructose and glucose are of the same magnitude. Although direct evidence is not yet available, it is likely that the high reactivity of fructose and its metabolites may substantially contribute to the formation of intracellular AGEs and may contribute to alterations of cellular proteins, dysfunction of cells and, subsequently, to vascular complications.

PubMed Disclaimer

Publication types

LinkOut - more resources