Nonlinear estimation and modeling of fMRI data using spatio-temporal support vector regression
- PMID: 15344495
- DOI: 10.1007/978-3-540-45087-0_54
Nonlinear estimation and modeling of fMRI data using spatio-temporal support vector regression
Abstract
This paper presents a new and general nonlinear framework for fMRI data analysis based on statistical learning methodology: support vector machines. Unlike most current methods which assume a linear model for simplicity, the estimation and analysis of fMRI signal within the proposed framework is nonlinear, which matches recent findings on the dynamics underlying neural activity and hemodynamic physiology. The approach utilizes spatio-temporal support vector regression (SVR), within which the intrinsic spatio-temporal autocorrelations in fMRI data are reflected. The novel formulation of the problem allows merging model-driven with data-driven methods, and therefore unifies these two currently separate modes of fMRI analysis. In addition, multiresolution signal analysis is achieved and developed. Other advantages of the approach are: avoidance of interpolation after motion estimation, embedded removal of low-frequency noise components, and easy incorporation of multi-run, multi-subject, and multi-task studies into the framework.
Similar articles
-
Analysis of event-related fMRI data using best clustering bases.Inf Process Med Imaging. 2003 Jul;18:623-34. doi: 10.1007/978-3-540-45087-0_52. Inf Process Med Imaging. 2003. PMID: 15344493
-
Unsupervised learning and mapping of active brain functional MRI signals based on hidden semi-Markov event sequence models.IEEE Trans Med Imaging. 2005 Feb;24(2):263-76. doi: 10.1109/tmi.2004.841225. IEEE Trans Med Imaging. 2005. PMID: 15707252
-
Estimation of the Hemodynamic Response Function in event-related functional MRI: directed acyclic graphs for a general Bayesian inference framework.Inf Process Med Imaging. 2003 Jul;18:635-46. doi: 10.1007/978-3-540-45087-0_53. Inf Process Med Imaging. 2003. PMID: 15344494 Clinical Trial.
-
Brain functional localization: a survey of image registration techniques.IEEE Trans Med Imaging. 2007 Apr;26(4):427-51. doi: 10.1109/TMI.2007.892508. IEEE Trans Med Imaging. 2007. PMID: 17427731 Review.
-
Increasing the effect size in event-related fMRI studies.IEEE Eng Med Biol Mag. 2006 Mar-Apr;25(2):91-101. doi: 10.1109/memb.2006.1607673. IEEE Eng Med Biol Mag. 2006. PMID: 16568941 Review. No abstract available.
Cited by
-
Unified framework for robust estimation of brain networks from FMRI using temporal and spatial correlation analyses.IEEE Trans Med Imaging. 2009 Aug;28(8):1296-307. doi: 10.1109/TMI.2009.2014863. Epub 2009 Feb 20. IEEE Trans Med Imaging. 2009. PMID: 19237342 Free PMC article.
-
Functional Brain Image Analysis Using Joint Function-Structure Priors.Med Image Comput Comput Assist Interv. 2004 Jan 1;3217:736-744. doi: 10.1901/jaba.2004.3217-736. Med Image Comput Comput Assist Interv. 2004. PMID: 20543899 Free PMC article.
-
Framework for Accurate Classification of Self-Reported Stress From Multisession Functional MRI Data of Veterans With Posttraumatic Stress.Chronic Stress (Thousand Oaks). 2023 Sep 28;7:24705470231203655. doi: 10.1177/24705470231203655. eCollection 2023 Jan-Dec. Chronic Stress (Thousand Oaks). 2023. PMID: 37780807 Free PMC article.
-
LEICA: Laplacian eigenmaps for group ICA decomposition of fMRI data.Neuroimage. 2018 Apr 1;169:363-373. doi: 10.1016/j.neuroimage.2017.12.018. Epub 2017 Dec 13. Neuroimage. 2018. PMID: 29246846 Free PMC article.
-
Macroscopic resting-state brain dynamics are best described by linear models.Nat Biomed Eng. 2024 Jan;8(1):68-84. doi: 10.1038/s41551-023-01117-y. Epub 2023 Dec 11. Nat Biomed Eng. 2024. PMID: 38082179 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Medical