Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Sep;16(9):758-66.
doi: 10.1111/j.1365-2826.2004.01232.x.

Ageing and the diurnal expression of mRNAs for vasoactive intestinal peptide and for the VPAC2 and PAC1 receptors in the suprachiasmatic nucleus of male rats

Affiliations
Comparative Study

Ageing and the diurnal expression of mRNAs for vasoactive intestinal peptide and for the VPAC2 and PAC1 receptors in the suprachiasmatic nucleus of male rats

I Kalló et al. J Neuroendocrinol. 2004 Sep.

Abstract

Ageing alters fundamental aspects of circadian rhythmicity in mammals; the effects include reduced rhythm amplitude and alterations in period length and in entrainment to the light/dark cycle. Such changes may reflect disruptions in cellular function within the suprachiasmatic nucleus (SCN), the site of the predominant circadian pacemaker. In the SCN, vasoactive intestinal peptide (VIP)-synthesizing neurones receive various inputs, including retinohypothalamic projections containing pituitary adenylate cyclase activating peptide (PACAP). SCN VIP cells establish connections with local neurones and send efferents beyond the nucleus. Considerable evidence implicates VIP and PACAP in circadian rhythm maintenance and/or entrainment to photic Zeitgebers. These actions involve members of a distinct family of receptors; mRNAs for two such receptors, VPAC2 and PAC1, are present in the SCN. This study used isotopic in situ hybridization to examine the effects of ageing on expression of mRNAs for VIP, VPAC2 and PAC1 in the SCN of male rats under a 12 : 12 h light/dark cycle. Analysis of film autoradiographs from young adult (2-3 months) or aged (19-20 months) rats, at eight time points across the light/dark cycle, showed loss of diurnal rhythmicity and reduced levels for VIP mRNA in the aged group. A diurnal rhythm of VPAC2 receptor mRNA was present in both groups, but its levels were reduced in the aged rats. There were no differences between the two groups for PAC1 receptor mRNA expression. The present results indicate that ageing reduces VIP and VPAC2 receptor mRNA and eliminates diurnal expression of VIP mRNA within the SCN of aged male rats.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources