Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jan;288(1):H37-42.
doi: 10.1152/ajpheart.00638.2004. Epub 2004 Sep 2.

Angiotensin II-induced hypertrophy is potentiated in mice overexpressing p22phox in vascular smooth muscle

Affiliations
Free article

Angiotensin II-induced hypertrophy is potentiated in mice overexpressing p22phox in vascular smooth muscle

David S Weber et al. Am J Physiol Heart Circ Physiol. 2005 Jan.
Free article

Abstract

Increased reactive oxygen species (ROS) are implicated in several vascular pathologies associated with vascular smooth muscle hypertrophy. In the current studies, we utilized transgenic (Tg) mice (Tg(p22smc)) that overexpress the p22(phox) subunit of NAD(P)H oxidase selectively in smooth muscle. These mice have a twofold increase in aortic p22(phox) expression and H(2)O(2) production and thus provide an excellent in vivo model in which to assess the effects of increased ROS generation on vascular smooth muscle cell (VSMC) function. We tested the hypothesis that overexpression of VSMC p22(phox) potentiates angiotensin II (ANG II)-induced vascular hypertrophy. Male Tg(p22smc) mice and negative littermate controls were infused with either ANG II or saline for 13 days. Baseline blood pressure was not different between control and Tg(p22smc) mice. ANG II significantly increased blood pressure in both groups, with this increase being slightly exacerbated in the Tg(p22smc) mice. Baseline aortic wall thickness and cross-sectional wall area were not different between control and Tg(p22smc) mice. Importantly, the ANG II-induced increase in both parameters was significantly greater in the Tg(p22smc) mice compared with control mice. To confirm that this potentiation of vascular hypertrophy was due to increased ROS levels, additional groups of mice were coinfused with ebselen. This treatment prevented the exacerbation of hypertrophy in Tg(p22smc) mice receiving ANG II. These data suggest that although increased availability of NAD(P)H oxidase-derived ROS is not a sufficient stimulus for hypertrophy, it does potentiate ANG II-induced vascular hypertrophy, making ROS an excellent target for intervention aimed at reducing medial thickening in vivo.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources