Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Aug;57(2):236-42; discussion 243.
doi: 10.1097/01.ta.0000133575.48065.3f.

Dynamic effects of a 9 mm missile on cadaveric skull protected by aramid, polyethylene or aluminum plate: an experimental study

Affiliations
Comparative Study

Dynamic effects of a 9 mm missile on cadaveric skull protected by aramid, polyethylene or aluminum plate: an experimental study

Jean-Claude Sarron et al. J Trauma. 2004 Aug.

Abstract

Background: Most military helmets are designed to prevent penetration by small firearms using composite materials in their construction. However, the transient deformation of the composite helmet during a non penetrating impact may result in severe head injury.

Method: Two experimental designs were undertaken to characterize the extend of injuries imparted by composite panels using in protective helmets. In the first series, 21 dry skulls were protected by polyethylene plates, with gaps between the protective plate and skull ranging from 12 to 15 mm. In another design, using 9 cadavers, heads were protected by aluminum, aramid, or polyethylene plates. Specimens were instrumented with pressure gauges to record the impact response. The ammunition used in these experiments was 9 mm caliber and had a velocity of 400 m/s. A macroscopic analysis of the specimens quantified fractures and injuries, which were then related to the measured pressures.

Results: Protective plates influenced both the levels of injury and the intracranial pressure. Injuries were accentuated as the plates was changed from aluminum to composite materials and ranged from skin laceration to extensive skull fractures and brain contusion. Fractures were associated with brain parenchymal pressures in excess of 560 kPa and cerebrospinal fluid pressure of 150 kPa. An air gap of a few millimeters between the plate and the head was sufficient to decrease these internal pressures by half, significantly reducing the level of injury.

Conclusions: Ballistic helmets made of composite materials could be optimized to avoid extensive transient deformation and thus reduce the impact and blunt trauma to the head. However, this deformation cannot be completely removed, which is why the gap between the helmet and the head must be maintained at more than 12 mm.

PubMed Disclaimer

Publication types

MeSH terms