Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Sep;11(9):1011-21.
doi: 10.1016/j.acra.2004.06.005.

Automated lung segmentation for thoracic CT impact on computer-aided diagnosis

Affiliations

Automated lung segmentation for thoracic CT impact on computer-aided diagnosis

Samuel G Armato 3rd et al. Acad Radiol. 2004 Sep.

Abstract

Rationale and objectives: Automated lung segmentation in thoracic computed tomography scans is essential for the development of computer-aided diagnostic (CAD) methods. A core segmentation method may be developed for general application; however, modifications may be required for specific clinical tasks.

Materials and methods: An automated lung segmentation method has been applied (1) as preprocessing for automated lung nodule detection and (2) as the foundation for computer-assisted measurements of pleural mesothelioma tumor thickness. The core method uses gray-level thresholding to segment the lungs within each computed tomography section. The segmentation is revised through separation of right and left lungs along the anterior junction line, elimination of the trachea and main bronchi from the lung segmentation regions, and suppression of the diaphragm. Segmentation modifications required for nodule detection include a rolling ball algorithm to include juxtapleural nodules and morphologic erosion to eliminate partial volume pixels at the boundary of the segmentation regions.

Results: For automated lung nodule detection, 4 of 82 actual nodules (4.9%) were excluded from the lung segmentation regions when the core segmentation method was modified compared with 14 nodules (17.1%) excluded without modifications. The computer-assisted quantification of mesothelioma method achieved a correlation coefficient of 0.990 with 134 manual measurements when the core segmentation method was used alone; correlation was reduced to 0.977 when the segmentation modifications, as adapted for the lung nodule detection task, were applied to the mesothelioma measurement task.

Conclusion: Different CAD applications impose different requirements on the automated lung segmentation process. The specific approach to lung segmentation must be adapted to the particular CAD task.

PubMed Disclaimer

Publication types

MeSH terms