Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Feb 15;42(4):561-7.
doi: 10.1002/ajmg.1320420428.

Mitochondrial ATP synthase subunit c storage in the ceroid-lipofuscinoses (Batten disease)

Affiliations

Mitochondrial ATP synthase subunit c storage in the ceroid-lipofuscinoses (Batten disease)

D N Palmer et al. Am J Med Genet. .

Abstract

The ceroid-lipofuscinoses (Batten disease) are neurodegenerative inherited lysosomal storage diseases of children and animals. A common finding is the occurrence of fluorescent storage bodies (lipopigment) in cells. These have been isolated from tissues of affected sheep. Direct protein sequencing established that the major component is identical to the dicyclohexylcarbodiimide (DCCD) reactive proteolipid, subunit c, of mitochondrial ATP synthase and that this protein accounts for at least 50% of the storage body mass. No other mitochondrial components are stored. Direct sequencing of storage bodies isolated from tissues of children with juvenile and late infantile ceroid-lipofuscinosis established that they also contain large amounts of complete and normal subunit c. It is also stored in the disease in cattle and dogs but is not present in storage bodies from the human infantile form. Subunit c is normally found as part of the mitochondrial ATP synthase complex and accounts for 2-4% of the inner mitochondrial membrane protein. Mitochondria from affected sheep contain normal amounts of this protein. The P1 and P2 genes that code for it are normal as are mRNA levels. Oxidative phosphorylation is also normal. These findings suggest that ovine ceroid-lipofuscinosis is caused by a specific failure in the degradation of subunit c after its normal inclusion into mitochondria, and its consequent abnormal accumulation in lysosomes. This implies a unique pathway for subunit c degradation. It is probable that the human late infantile and juvenile diseases and the disease in cattle and dogs involve lesions in the same pathway.

PubMed Disclaimer

Publication types

LinkOut - more resources