Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Sep;15(9):832-41.
doi: 10.1089/hum.2004.15.832.

Functional characterization of a recombinant adeno-associated virus 5-pseudotyped cystic fibrosis transmembrane conductance regulator vector

Affiliations

Functional characterization of a recombinant adeno-associated virus 5-pseudotyped cystic fibrosis transmembrane conductance regulator vector

Jeffrey Sirninger et al. Hum Gene Ther. 2004 Sep.

Abstract

Despite extensive experience with recombinant adeno-associated virus (rAAV) 2 vectors in the lung, gene expression has been low in the context of cystic fibrosis (CF) gene therapy, where the large size of the cystic fibrosis transmembrane conductance regulator (CFTR) coding sequence has prompted the use of compact endogenous promoter elements. We evaluated the possibility that gene expression from recombinant adeno-associated virus (rAAV) could be improved by using alternate AAV capsid serotypes that target different cell-surface receptors (i.e., rAAV5) and/or using stronger promoters. The relative activities of the cytomegalovirus (CMV) Rous sarcoma virus (RSV) promoter, the CMV enhancer/beta-actin (CB) promoter combination, and the CMV enhancer/RSV promoter hybrid were assessed in vitro in a CF bronchial cell line. The CB promoter was the most efficient. AAV capsid serotypes, rAAV2 and rAAV5, were also compared, and rAAV5 was found to be significantly more efficient. Based on these studies a rAAV5-CB-promoter-driven CFTR minigene vector was then used to correct the CF chloride transport defect in vitro, as well as the hyperinflammatory lung phenotype in Pseudomonas-agarose bead challenged CF mouse lungs in vivo. These studies provide functional characterization of a new version of rAAV-CFTR vectors.

PubMed Disclaimer

Publication types

MeSH terms