Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004;64(3):148-62.
doi: 10.1159/000079744.

Sensory systems in amphioxus: a window on the ancestral chordate condition

Affiliations
Review

Sensory systems in amphioxus: a window on the ancestral chordate condition

Thurston C Lacalli. Brain Behav Evol. 2004.

Abstract

Amphioxus has an assortment of cells and organs for sensing light and mechanical stimuli. Vertebrate counterparts of these structures are not always apparent, and a strong case can be made for homology in only a few instances. For example, amphioxus has anatomically simple but plausible homologs of both the pineal and paired eyes of vertebrates. Placodal and neural crest derivatives are, however, more problematic: the evidence for an olfactory system in amphioxus is only circumstantial and, despite the variety of secondary sensory cell types that occur on the body surface in amphioxus, none are obvious homologs of vertebrate taste buds, neuromasts or acoustic hair cells. A useful perspective can nevertheless be gained by examining differences in amphioxus and vertebrate development, specifically how each specifies and positions sensory precursors, controls their proliferation, and deploys them through the body. The much larger size of vertebrate embryos and the need to cope developmentally with increased scale and cell numbers may account for some key vertebrate innovations, including placodes and neural crest. The presence or absence of specific structural adaptations, like the latter, is therefore less useful for judging homology between amphioxus and vertebrates than shared features of specific cell types. It is also clear that the duration of embryogenesis in vertebrates has been significantly extended in comparison with ancestral chordates so as to incorporate events that would originally have occurred during the post-embryonic growth period, including events of neurogenesis. Consequently, no scenario for the origin of vertebrates can be considered complete unless it deals explicitly with the whole of the life history and changes to it.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources