Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jun;74(6):522-31.
doi: 10.1007/s00223-002-0011-3.

Interactions of amelogenins with octacalcium phosphate crystal faces are dose dependent

Affiliations

Interactions of amelogenins with octacalcium phosphate crystal faces are dose dependent

M Iijima et al. Calcif Tissue Int. 2004 Jun.

Abstract

Amelogenins, the major protein components of the enamel extracellular matrix, are postulated to be involved in controlling the elongated and oriented growth of enamel carbonated apatite crystals. In order to clarify the functional role of amelogenin during the early stage of enamel biomineralization, octacalcium phosphate (OCP) crystals, known to be potent precursors of hydroxyapatite, were grown in 1-10% (w/w) native bovine and two recombinant murine amelogenins. Amelogenins were solution-like at 1% and formed gel at 10%, while 5% amelogenins became gel after reaction and it was inhomogeneous and porous. Morphological changes of OCP crystals were evaluated as the function of amelogenin concentration by analyzing the mean values of length, width, thickness, their reduction ratios (L/Lc, W/Wc, T/Tc) as well as L/W and W/T ratios. Length, width, and thickness decreased in a does-dependent manner. Length decreased almost linearly in 1%-10%, whereas width decreased drastically in 1%-5% while the decrease from 5% to 10% was small. As a result, elongated morphology of OCP crystal was most emphasized in 5% bovine amelogenins and rM166 and 2%-5% rM179. The size reduction was in the order of W/Wc < L/Lc < T/Tc. We therefore concluded that amelogenin interaction with crystal faces was in the order (010) > (001) > (100). At all concentrations, W/ Wc was significantly the smallest. This indicated that the primary role of amelogenin was to decrease the width of OCP by blocking the hydrophobic (010) faces. We suggest that the drastic decrease of crystal width is the result of interaction of the densely packed nanospheres in 5%-10% amelogenin.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources