Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Sep 8:5:126.
doi: 10.1186/1471-2105-5-126.

Iterative class discovery and feature selection using Minimal Spanning Trees

Affiliations

Iterative class discovery and feature selection using Minimal Spanning Trees

Sudhir Varma et al. BMC Bioinformatics. .

Abstract

Background: Clustering is one of the most commonly used methods for discovering hidden structure in microarray gene expression data. Most current methods for clustering samples are based on distance metrics utilizing all genes. This has the effect of obscuring clustering in samples that may be evident only when looking at a subset of genes, because noise from irrelevant genes dominates the signal from the relevant genes in the distance calculation.

Results: We describe an algorithm for automatically detecting clusters of samples that are discernable only in a subset of genes. We use iteration between Minimal Spanning Tree based clustering and feature selection to remove noise genes in a step-wise manner while simultaneously sharpening the clustering. Evaluation of this algorithm on synthetic data shows that it resolves planted clusters with high accuracy in spite of noise and the presence of other clusters. It also shows a low probability of detecting spurious clusters. Testing the algorithm on some well known micro-array data-sets reveals known biological classes as well as novel clusters.

Conclusions: The iterative clustering method offers considerable improvement over clustering in all genes. This method can be used to discover partitions and their biological significance can be determined by comparing with clinical correlates and gene annotations. The MATLAB programs for the iterative clustering algorithm are available from http://linus.nci.nih.gov/supplement.html

PubMed Disclaimer

Figures

Figure 1
Figure 1
Hierarchical clustering of BRCA data using all genes. Hierarchical clustering of BRCA data using centered correlation with average linkage. Inclusion of all genes in the clustering swamps out the differences between samples with BRCA1 and BRCA2 mutation.
Figure 2
Figure 2
Detection probability vs. cluster separation. Probability of detection of the planted partition as a function of the distance between the clusters in the partition.
Figure 3
Figure 3
Hierarchical clustering of BRCA data using selected genes. Hierarchical clustering of BRCA data using only the genes supporting Partition 4. BRCA1 and BRCA2 are separated with one misclassification.

Similar articles

Cited by

References

    1. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson J, Jr, Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Levy R, Wilson W, Grever MR, Byrd JC, Botstein D, Brown PO, Staudt LM. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403:503–511. doi: 10.1038/35000501. - DOI - PubMed
    1. Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K, Ferrari M, Egevad L, Rayford W, Bergerheim U, Ekman P, DeMarzo AM, Tibshirani R, Botstein D, Brown PO, Brooks JD, Pollack JR. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. PNAS. 2004;101:811–816. doi: 10.1073/pnas.0304146101. - DOI - PMC - PubMed
    1. Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, Radmacher M, Simon R, Yakhini Z, Ben-Dor A, Sampas N, Dougherty E, Wang E, Marincola F, Gooden C, Lueders J, Glatfelter A, Pollock P, Carpten J, Gillanders E, Leja D, Dietrich K, Beaudry C, Berens M, Alberts D, Sondak V. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature. 2000;406:536–40. doi: 10.1038/35020115. - DOI - PubMed
    1. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. PNAS. 1998;95:14863–14868. doi: 10.1073/pnas.95.25.14863. - DOI - PMC - PubMed
    1. Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM. Systematic determination of genetic network architecture. Nature Genetics. 1999;22:281–285. doi: 10.1038/10343. - DOI - PubMed

MeSH terms

LinkOut - more resources