Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Sep 15;173(6):4171-8.
doi: 10.4049/jimmunol.173.6.4171.

Modulation of renal disease in MRL/lpr mice by suberoylanilide hydroxamic acid

Affiliations

Modulation of renal disease in MRL/lpr mice by suberoylanilide hydroxamic acid

Christopher M Reilly et al. J Immunol. .

Abstract

Epigenetic regulation of gene expression is involved in the development of many diseases. Histone acetylation is a posttranslational modification of the nucleosomal histone tails that is regulated by the balance of histone deacetylases and histone acetyltransferases. Alterations in the balance of histone acetylation have been shown to cause aberrant expression of genes that are a hallmark of many diseases, including systemic lupus erythematosus. In this study, we determined whether suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor: 1) inhibits inflammatory mediator production in vitro and 2) modulates lupus progression in vivo. Mesangial cells isolated from 10-wk-old MRL/lpr mice were stimulated with LPS/IFN-gamma and incubated with SAHA. TNF-alpha, IL-6, NO, and inducible NO synthase expression were inhibited by SAHA. We then treated MRL/lpr mice with daily injections of SAHA from age 10 to 20 wk. The animals treated with SAHA had decreased spleen size and a concomitant decrease in CD4-CD8- (double-negative) T cells compared with controls. Serum autoantibody levels and glomerular IgG and C3 deposition in SAHA-treated mice were similar to controls. In contrast, proteinuria and pathologic renal disease were significantly inhibited in the mice receiving SAHA. These data indicate that SAHA blocks mesangial cell inflammatory mediator production in vitro and disease progression in vivo in MRL/lpr mice.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms