Sequence-specific DNA binding by the MspI DNA methyltransferase
- PMID: 1535704
- PMCID: PMC312454
- DOI: 10.1093/nar/20.12.3167
Sequence-specific DNA binding by the MspI DNA methyltransferase
Abstract
The MspI methyltransferase (M.MspI) recognizes the sequence CCGG and catalyzes the formation of 5-methylcytosine at the fist C-residue. We have investigated the sequence-specific DNA-binding properties of M.MspI under equilibrium conditions, using gel-mobility shift assays and DNasel footprinting. M.MspI binds to DNA in a sequence-specific manner either alone or in the presence of the normal methyl donor S-adenosyl-L-methionine as well as the analogues, sinefungin and S-adenosyl-L-homocysteine. In the presence of S-adenosyl-L-homocysteine, M.MspI shows the highest binding affinity to DNA containing a hemimethylated recognition sequence (Kd = 3.6 x 10(-7) M), but binds less well to unmethylated DNA (Kd = 8.3 x 10(-7) M). Surprisingly it shows specific, although poor, binding to fully methylated DNA (Kd = 4.2 x 10(-6) M). M.MspI binds approximately 5-fold more tightly to DNA containing its recognition sequence, CCGG, than to nonspecific sequences in the absence of cofactors. In the presence of S-adenosyl-L-methionine, S-adenosyl-L-homocysteine or sinefungin the discrimination between specific and non-specific sequences increases up to 100-fold. DNasel footprinting studies indicate that 16 base pairs of DNA are covered by M.MspI, with the recognition sequence CCGG located asymmetrically within the footprint.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
