Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Sep 3;321(4):845-50.
doi: 10.1016/j.bbrc.2004.07.035.

Thioredoxin-1 mediates osteoclast stimulation by reactive oxygen species

Affiliations

Thioredoxin-1 mediates osteoclast stimulation by reactive oxygen species

Jennifer Lean et al. Biochem Biophys Res Commun. .

Abstract

We found that the antioxidant protein thioredoxin-1 (Trx) is more highly expressed in osteoclasts than in macrophages. Moreover, transfection of RAW 264.7 (RAW) cells with a Trx-expression construct resulted in a dramatic increase in their capacity for osteoclast formation. In contrast, Trx-expression was suppressed and osteoclast formation was abrogated by transfection with the antioxidant proteins glutathione peroxidase-1 (Gpx) or peroxiredoxin-1 (Prx). These divergent effects suggest that Trx augments osteoclast formation through some special function. It is known that Trx enhances the binding of several transcription factors to DNA. We found that AP-1, NFkappaB, and NFAT-reporter gene expression was enhanced more greatly by RANKL in RAW cells transfected with the Trx-expression construct. Thus, oxidants stimulate osteoclastic differentiation by induction of Trx-expression, which augments the DNA binding of transcription factors essential for osteoclastic differentiation. Conversely, antioxidants, including Gpx and Prx, suppress Trx-expression and thereby osteoclastic differentiation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources