Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Aug 13;321(1):65-71.
doi: 10.1016/j.bbrc.2004.06.107.

C-reactive protein impairs angiogenic functions and decreases the secretion of arteriogenic chemo-cytokines in human endothelial progenitor cells

Affiliations

C-reactive protein impairs angiogenic functions and decreases the secretion of arteriogenic chemo-cytokines in human endothelial progenitor cells

Wonhee Suh et al. Biochem Biophys Res Commun. .

Abstract

C-reactive protein (CRP), a predictor of future cardiovascular diseases, has been reported to damage the vascular wall by inducing endothelial dysfunction and inflammation. This proatherogenic CRP was speculated to have a role in attenuating angiogenic functions of human endothelial progenitor cells (EPCs), possibly impairing vascular regeneration and increasing cardiovascular vulnerability to ischemic injury. Herein, we investigated the direct effect of CRP on angiogenic activity and gene expression in human EPCs. Incubation of EPCs with human recombinant CRP significantly inhibited EPC migration in response to vascular endothelial growth factor, possibly by decreasing the expression of endothelial nitric oxide synthase and subsequent nitric oxide production. In addition, CRP-treated EPCs showed the reduced adhesiveness onto an endothelial cell monolayer. When assayed for the gene expression of arteriogenic chemo-cytokines, CRP substantially decreased their expression levels in EPC, in part due to the upregulation of suppressors of cytokine signaling proteins. These results suggest that CRP directly attenuates the angiogenic and possibly arteriogenic functions of EPCs. This CRP-induced EPC dysfunction may impair the vascular regenerative capacity of EPCs, thereby leading to increased risk of cardiovascular diseases.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources