Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Oct;10(5):432-42.
doi: 10.1177/1073858404263463.

Zn2+ ions: modulators of excitatory and inhibitory synaptic activity

Affiliations
Review

Zn2+ ions: modulators of excitatory and inhibitory synaptic activity

Trevor G Smart et al. Neuroscientist. 2004 Oct.

Abstract

The role of Zn(2+) in the CNS has remained enigmatic for several decades. This divalent cation is accumulated by specific neurons into synaptic vesicles and can be released by stimulation in a Ca(2+)-dependent manner. Using Zn(2+) fluorophores, radiolabeled Zn(2+), and selective chelators, the location of this ion and its release pattern have been established across the brain. Given the distribution and possible release under physiological conditions, Zn(2+) has the potential to act as a modulator of both excitatory and inhibitory neurotransmission. Excitatory N-methyl-D-aspartate (NMDA) receptors are directly inhibited by Zn(2+), whereas non-NMDA receptors appear relatively unaffected. In contrast, inhibitory transmission mediated via GABA(A)receptors can be potentiated via a presynaptic mechanism, influencing transmitter release; however, although some tonic GABAergic inhibition may be suppressed by Zn(2+), most synaptic GABA receptors are unlikely to be modulated directly by this cation. In the spinal cord, glycinergic transmission may also be affected by Zn(2+) causing potentiation. Recently, the penetration of synaptically released Zn(2+) into neurons suggests that this ion has the potential to act as a direct transmitter, by affecting postsynaptic signaling pathways. Taken overall, present studies are broadly supportive of a neuromodulatory role for Zn(2+) at specific excitatory and inhibitory synapses.

PubMed Disclaimer

Publication types

LinkOut - more resources