Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Sep;96(1):27-32.
doi: 10.1254/jphs.fmj04002x6. Epub 2004 Sep 10.

Forefront of Na+/Ca2+ exchanger studies: molecular pharmacology of Na+/Ca2+ exchange inhibitors

Affiliations
Free article
Review

Forefront of Na+/Ca2+ exchanger studies: molecular pharmacology of Na+/Ca2+ exchange inhibitors

Takahiro Iwamoto. J Pharmacol Sci. 2004 Sep.
Free article

Abstract

The Na+/Ca2+ exchanger (NCX) is an ion transporter that exchanges Na+ and Ca2+ in either Ca2+ efflux or Ca2+ influx mode, depending on membrane potential and transmembrane ion gradients. In myocytes, neurons, and nephron cells, NCX is thought to play an important role in the regulation of intracellular Ca2+ concentration. Recently, the benzyloxyphenyl derivatives KB-R7943, SEA0400, and SN-6 have been developed as selective NCX inhibitors. Currently, SEA0400 is the most potent and selective inhibitor. These inhibitors possess different isoform-selectivities, although they have similar properties, such as Ca2+ influx mode-selectivity and I1 inactivation-dependence. Recent site-directed mutagenesis has revealed that these inhibitors possess some molecular determinants (Phe-213, Val-227, Tyr-228, Gly-833, and Asn-839) for interaction with NCX1. These benzyloxyphenyl derivatives are expected to be useful tools to study the physiological roles of NCX. Moreover, such inhibitors may have therapeutic potential as a new remedy for ischemic disease, arrhythmias, heart failure, and hypertension.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms