Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004;107(Pt 1):472-6.

A comparison of semantic categories of the ISO reference terminology models for nursing and the MedLEE natural language processing system

Affiliations
  • PMID: 15360857
Comparative Study

A comparison of semantic categories of the ISO reference terminology models for nursing and the MedLEE natural language processing system

Suzanne Bakken et al. Stud Health Technol Inform. 2004.

Abstract

Natural language processing (NLP) systems have demonstrated utility in parsing narrative texts for purposes such as surveillance and decision support. However, there has been little work related to NLP of nursing narratives. The purpose of this study was to compare the semantic categories of a NLP system (Medical Language Extraction and Encoding [MedLEE] system) with the semantic domains, categories, and attributes of the International Standards Organization(ISO) reference terminology models for nursing diagnoses and nursing actions. All but two MedLEE diagnosis and procedure-related semantic categories mapped to ISO models. In some instances, we found exact correspondence between the semantic structures of MedLEE and the ISO models. In other situations (e.g. aspects of site or location), the ISO model was not as granular as MedLEE. For clinical procedure and non-invasive examination, two ISO nursing action model components (action and target) were required to represent the MedLEE semantic category. The ISO model requires additional specification of selected semantic categories for the abstract semantic domains in order to achieve the objective of using NLP to parse and encode data from nursing narratives. Our analysis also suggests areas for extension of MedLEE.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources