Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Oct:201:89-116.
doi: 10.1111/j.0105-2896.2004.00191.x.

Helminth parasites--masters of regulation

Affiliations
Review

Helminth parasites--masters of regulation

Rick M Maizels et al. Immunol Rev. 2004 Oct.

Abstract

Immune regulation by parasites is a global concept that includes suppression, diversion, and conversion of the host immune response to the benefit of the pathogen. While many microparasites escape immune attack by antigenic variation or sequestration in specialized niches, helminths appear to thrive in exposed extracellular locations, such as the lymphatics, bloodstream, or gastrointestinal tract. We review here the multiple layers of immunoregulation that have now been discovered in helminth infection and discuss both the cellular and the molecular interactions involved. Key events among the host cell population are dominance of the T-helper 2 cell (Th2) phenotype and the selective loss of effector activity, against a background of regulatory T cells, alternatively activated macrophages, and Th2-inducing dendritic cells. Increasingly, there is evidence of important effects on other innate cell types, particularly mast cells and eosinophils. The sum effect of these changes to host reactivity is to create an anti-inflammatory environment, which is most favorable to parasite survival. We hypothesize therefore that parasites have evolved specific molecular strategies to induce this conducive landscape, and we review the foremost candidate immunomodulators released by helminths, including cytokine homologs, protease inhibitors, and an intriguing set of novel products implicated in immune suppression.

PubMed Disclaimer

Publication types

LinkOut - more resources