Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Sep;127(3):802-15.
doi: 10.1053/j.gastro.2004.06.004.

ClC-2 chloride secretion mediates prostaglandin-induced recovery of barrier function in ischemia-injured porcine ileum

Affiliations

ClC-2 chloride secretion mediates prostaglandin-induced recovery of barrier function in ischemia-injured porcine ileum

Adam J Moeser et al. Gastroenterology. 2004 Sep.

Abstract

Background & aims: Ischemia results in the breakdown of the intestinal barrier, predisposing patients to sepsis and multiple organ failure. Prostaglandins play a critical role in mediating recovery of barrier function in ischemia-injured intestine through a mechanism involving stimulation of Cl - secretion. In the present study, we investigated the contributory role of individual Cl - channels in the recovery of barrier function in ischemia-injured porcine ileum.

Methods: Ischemia-injured porcine ileal mucosa was mounted in Ussing chambers. Short-circuit current (Isc) and transepithelial resistance (TER) were measured in response to prostaglandin E 2 (PGE 2 ) and pharmacologic inhibitors of epithelial Cl - channels. Immunoassays were used to assess the expression and localization of ion channels.

Results: Application of PGE 2 to ischemia-injured ileal mucosa stimulated increases in Isc, an indicator of Cl - secretion, that was followed by marked increases in TER, an indicator of barrier function recovery. In vitro studies revealed that although PGE 2 induced Cl - secretion via at least 3 distinct secretory pathways, recovery of barrier function was initiated by Cl - secretion via ClC-2 Cl - channels co-expressed with occludin and localized to tight junctions within restituting epithelium. Intravenous administration of furosemide to pigs subjected to 1 hour of ileal ischemia impaired recovery of barrier function, as evidenced by decreased TER and increased mucosal-to-serosal 3 H-mannitol flux after a 2-hour reperfusion/recovery period, confirming an important role for Cl - secretory pathways in vivo.

Conclusions: ClC-2-mediated intestinal Cl - secretion restores TER in ischemia-injured intestine. These data may provide the basis for targeted pharmacologic therapy for diseases associated with impaired barrier function.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources