Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Sep 16;43(6):795-807.
doi: 10.1016/j.neuron.2004.08.041.

Foxn4 controls the genesis of amacrine and horizontal cells by retinal progenitors

Affiliations
Free article
Comparative Study

Foxn4 controls the genesis of amacrine and horizontal cells by retinal progenitors

Shengguo Li et al. Neuron. .
Free article

Abstract

During vertebrate retinogenesis, seven classes of cells are specified from multipotent progenitors. To date, the mechanisms underlying multipotent cell fate determination by retinal progenitors remain poorly understood. Here, we show that the Foxn4 winged helix/forkhead transcription factor is expressed in a subset of mitotic progenitors during mouse retinogenesis. Targeted disruption of Foxn4 largely eliminates amacrine neurons and completely abolishes horizontal cells, while overexpression of Foxn4 strongly promotes an amacrine cell fate. These results indicate that Foxn4 is both necessary and sufficient for commitment to the amacrine cell fate and is nonredundantly required for the genesis of horizontal cells. Furthermore, we provide evidence that Foxn4 controls the formation of amacrine and horizontal cells by activating the expression of the retinogenic factors Math3, NeuroD1, and Prox1. Our data suggest a model in which Foxn4 cooperates with other key retinogenic factors to mediate the multipotent differentiation of retinal progenitors.

PubMed Disclaimer

Comment in

Publication types