Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 2004 Oct;24(4):312-20.
doi: 10.1002/humu.20085.

Molecular and functional analysis of SLC25A20 mutations causing carnitine-acylcarnitine translocase deficiency

Affiliations
Case Reports

Molecular and functional analysis of SLC25A20 mutations causing carnitine-acylcarnitine translocase deficiency

Vito Iacobazzi et al. Hum Mutat. 2004 Oct.

Abstract

The enzyme carnitine-acylcarnitine translocase (CACT) is involved in the transport of long-chain fatty acids into mitochondria. CACT deficiency is a life-threatening, recessively inherited disorder of lipid beta-oxidation which manifests in early infancy with hypoketotic hypoglycemia, cardiomyopathy, liver failure, and muscle weakness. We report here the clinical, biochemical, and molecular features of six CACT-deficient patients from Italy, Spain, and North America who exhibited significant clinical heterogeneity. In five patients (Patients 1, 2, 4, 5, and 6) the disease manifested in the neonatal period, while the remaining patient (Patient 3), the younger sibling of an infant who had died with clinical suspicion of fatty acid oxidation defect, has been treated since birth and was clinically asymptomatic at 4.5 years of age. Patients 1 and 4 were deceased within 6 months from the onset of this study, while the remaining four are still alive at 8, 4.5, 3.5, and 2 years, respectively. Sequence analysis of the CACT gene (SLC25A20) disclosed five novel mutations and three previously reported mutations. Three patients were homozygous for the identified mutations. Two of the novel mutations (c.718+1G>C and c.843+4_843+50del) altered the donor splice site of introns 7 and 8, respectively. The 47-nt deletion in intron 8 caused both skipping of exon 8 only and skipping of exons 6-8. Four mutations [[c.159dupT;c.163delA] ([p.Gly54Trp;p.Thr55Ala]) c.397C>T (p.Arg133Trp), c.691G>C (p.Asp231His), and c.842C>T (p.Ala281Val)] resulted in amino acid substitutions affecting evolutionarily conserved regions of the protein. Interestingly, one of these exonic mutations (p.Ala281Val) was associated with a splicing defect also characterized by skipping of exons 6-8. The deleterious effect of the p.Arg133Trp substitution was demonstrated by measuring CACT activity upon expression of the normal and the mutant protein in E. coli and functional reconstitution into liposomes. Combined analysis of clinical, biochemical, and molecular data failed to indicate a correlation between the phenotype and the genotype.

PubMed Disclaimer

Publication types

MeSH terms

Associated data