Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Oct;17(5):579-85.
doi: 10.1097/00019052-200410000-00008.

Charcot-Marie-Tooth disease: an update

Affiliations
Review

Charcot-Marie-Tooth disease: an update

Michael E Shy. Curr Opin Neurol. 2004 Oct.

Abstract

Purpose of review: The purpose of this review is to assist neurologists, neuroscientists and other interested readers in following the expanding volume of information relating to the inherited peripheral neuropathies collectively referred to as Charcot-Marie-Tooth disease. Currently, mutations in multiple different genes expressed in Schwann cells and neurons cause a variety of overlapping clinical phenotypes.

Recent findings: Recent articles clarify molecular pathways involved in the pathogenesis of these disorders, and for the first time provide rational treatment strategies for the most common form of Charcot-Marie-Tooth disease. The identification of many new genes associated with neuropathy demonstrate the role of axonal transport and abnormal protein trafficking in causing various forms of Charcot-Marie-Tooth. They also further define the role of axonal signaling and the molecular architecture of both Schwann cells and neurons in maintaining normal peripheral nervous system function. Finally, recent reports have shown that progesterone antagonists and ascorbic acid can successfully treat rodent models of Charcot-Marie-Tooth disease type 1A.

Summary: Taken together, results from these articles support the concept that genetic causes of Charcot-Marie-Tooth disease serve as a living microarray system to identify molecules necessary for normal peripheral nervous system function. When we can make sense of these microarrays we are likely to understand the pathogenesis and develop rational therapies for many neurodegenerative diseases including Charcot-Marie-Tooth.

PubMed Disclaimer

MeSH terms