Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Sep;2(9):E311.
doi: 10.1371/journal.pbio.0020311. Epub 2004 Sep 14.

Hormonal regulation of plant growth and development

Affiliations
Review

Hormonal regulation of plant growth and development

William M Gray. PLoS Biol. 2004 Sep.

Abstract

Besides environmental factors, plant growth depends upon endogenous signals. Bill Gray examines what these hormonal signals are and how they act to regulate many aspects of growth and development.

PubMed Disclaimer

Figures

Figure 1
Figure 1. Chemical Structures of the Plant Hormones
A partial list of the responses elicited by each hormone is provided below. Ethylene gas promotes fruit ripening, senescence, and responses to pathogens and abiotic stresses. IAA (an auxin) regulates cell division and expansion, vascular differentiation, lateral root development, and apical dominance. Cytokinins are adenine derivatives first identified by their ability to promote cytokinesis. JA is a volatile signal that modulates pollen development and responses to pathogen infection. The BRs regulate cell expansion and photomorphogenesis (light-regulated development). GAs are diterpenoid compounds that promote germination, stem elongation, and the induction of flowering. ABA promotes seed dormancy and is involved in several stress signaling pathways.
Figure 2
Figure 2. The Ubiquitin-Mediated Proteolysis of Aux/IAA Proteins Regulates Auxin Response
(A) Wild-type Arabidopsis thaliana and the axr2-1 mutant. axr2-1 is a dominant gain-of-function mutation in an Aux/IAA gene that confers reduced auxin response. The mutant axr2-1 protein constitutively represses auxin response because it cannot be targeted for proteolysis by the SCFTIR1 ubiquitin ligase. The effect of the mutation on AXR2 stability is shown in a pulse-chase experiment (inset). Wild-type and axr2-1 seedlings were labeled with 35S-methionine and AXR2/axr2-1 protein was immunoprecipitated either immediately after the labeling period (t = 0) or following a 15-minute chase with unlabeled methionine (t = 15). (B) A simplified model for auxin response. In the absence of an auxin stimulus, Aux/ IAA proteins inhibit ARF transcriptional activity by forming heterodimers. Auxin perception (by an unknown receptor) targets the Aux/IAA proteins to the SCFTIR1 complex, resulting in their ubiquitination and degradation, thereby de-repressing the ARF transcription factors. Among the ARF targets are the Aux/IAA genes themselves, which produce nascent Aux/IAA proteins that restore repression upon the pathway in a negative feedback loop.
Figure 3
Figure 3. A Model for the Arabidopsis Ethylene Response Pathway
Ethylene is perceived by a family of two-component receptors containing a consensus (unshaded) or degenerate (shaded) HK domain (H). Three of the receptors also contain a C-terminal receiver domain (R). The receptors negatively regulate ethylene response together with CTR1 in a complex on the endoplasmic reticulum membrane. Perception results in reduced receptor and CTR1 activities and activation of a MAP kinase kinase, which transmits the signal through the EIN2 membrane protein, ultimately resulting in the activation of a transcriptional cascade in the nucleus. The EIN3 and EIL1 transcription factors regulate primary response genes including ERF1, which activates a subset of secondary ethylene-induced genes involved in defense responses. EIN3/EIL1 abundance is regulated in an ethylene-dependent manner by SCF complexes containing F-box proteins encoded by the ethylene-induced genes EBF1 and EBF2. Positive- and negative-acting components of the pathway are indicated in green and red, respectively. Solid lines indicate regulation that is likely to be through direct interactions. Dotted lines indicate speculative interactions based on genetic studies.

References

    1. Chang C. Ethylene signaling: The MAPK module has finally landed. Trends Plant Sci. 2003;8:365–368. - PubMed
    1. Deshaies RJ. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol. 1999;15:435–467. - PubMed
    1. Dharmasiri N, Estelle M. Auxin signaling and regulated protein degradation. Trends Plant Sci. 2004;9:302–308. - PubMed
    1. Goda H, Sawa S, Asami T, Fujioka S, Shimada Y, et al. Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis . Plant Physiol. 2004;134:1555–1573. - PMC - PubMed
    1. Gomi K, Matsuoka M. Gibberellin signalling pathway. Curr Opin Plant Biol. 2003;6:489–493. - PubMed