Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Oct 1;71(1):6-15.
doi: 10.1002/jbm.a.30123.

Lubrication and wear properties of grafted polyelectrolytes, hyaluronan and hylan, measured in the surface forces apparatus

Affiliations

Lubrication and wear properties of grafted polyelectrolytes, hyaluronan and hylan, measured in the surface forces apparatus

Marcel Benz et al. J Biomed Mater Res A. .

Abstract

Hyaluronan is believed to have an important function in the boundary biolubrication of articular cartilage. Using a Surface Forces Apparatus, we tested the tribological properties of surface bound, rather than "free" hyaluronan. The grafting process of the polyelectrolyte included either a biological route via an HA-binding protein or a chemical reaction to covalently bind the polymer to a lipid bilayer coated surface. In another reaction, we constructed a surface with covalently grafted hylan (crosslinked hyaluronan). We studied the normal and shear forces between these surfaces. None of the systems demonstrated comparable lubrication to that found between cartilage surfaces except at very low loads. Both grafted hyaluronan and hylan generated coefficients of friction between 0.15 and 0.3. Thus, the polysaccharide, which is a constituent of the lamina splendens (outermost cartilage layer), is not expected to be the responsible molecule for the great lubricity of cartilage; however, it may contribute to the load bearing and wear protection of these surfaces. This was concluded from the results with hylan, where a thin gel layer was sufficient to shield the underlying surfaces from damage even at applied pressures of over 200 atmospheres during shear. Our study shows that a low coefficient of friction is not a requirement for, or necessarily a measure of, wear protection.

PubMed Disclaimer

Publication types

LinkOut - more resources