Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 May-Aug;11(3-4):199-206.
doi: 10.1080/10623320490512390.

Low-molecular-weight peptides derived from extracellular matrix as chemoattractants for primary endothelial cells

Affiliations

Low-molecular-weight peptides derived from extracellular matrix as chemoattractants for primary endothelial cells

F Li et al. Endothelium. 2004 May-Aug.

Abstract

The development of synthetic and naturally occurring scaffolds for tissue engineering applications has included strategies to promote attachment of specific cell types, control the rate of scaffold degradation, encourage angiogenesis, or otherwise modulate the host response. We have reported that bioscaffolds developed from porcine small intestinal submucosa (SIS) facilitate the constructive remodeling of tissues and recruit marrow-derived cells that persist long after the acute inflammatory stages have resolved. We have not yet determined which cells are recruited, the eventual fate of these cells, or via what mechanisms the events occur. We now have analyzed various molecular weight fractions of acid-hydrolyzed SIS by both functional and morphologic methods and have determined that fraction 4 (5 to 16 kDa) possesses chemoattractant activity for primary murine adult liver, heart, and kidney endothelial cells in vitro. Addition of fraction 4 to Matrigel plugs promoted in vivo vascularization when the plugs were implanted subcutaneously in mice. These results indicate that small-molecular-weight peptides derived from the degradation of porcine SIS are biologically active in the recruitment of murine endothelial cells in vitro and in vivo.

PubMed Disclaimer

MeSH terms

LinkOut - more resources