Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Sep 16;431(7006):312-6.
doi: 10.1038/nature02913.

Long-lasting self-inhibition of neocortical interneurons mediated by endocannabinoids

Affiliations

Long-lasting self-inhibition of neocortical interneurons mediated by endocannabinoids

Alberto Bacci et al. Nature. .

Abstract

Neocortical GABA-containing interneurons form complex functional networks responsible for feedforward and feedback inhibition and for the generation of cortical oscillations associated with several behavioural functions. We previously reported that fast-spiking (FS), but not low-threshold-spiking (LTS), neocortical interneurons from rats generate a fast and precise self-inhibition mediated by inhibitory autaptic transmission. Here we show that LTS cells possess a different form of self-inhibition. LTS, but not FS, interneurons undergo a prominent hyperpolarization mediated by an increased K+-channel conductance. This self-induced inhibition lasts for many minutes, is dependent on an increase in intracellular [Ca2+] and is blocked by the cannabinoid receptor antagonist AM251, indicating that it is mediated by the autocrine release of endogenous cannabinoids. Endocannabinoid-mediated slow self-inhibition represents a powerful and long-lasting mechanism that alters the intrinsic excitability of LTS neurons, which selectively target the major site of excitatory connections onto pyramidal neurons; that is, their dendrites. Thus, modulation of LTS networks after their sustained firing will lead to long-lasting changes of glutamate-mediated synaptic strength in pyramidal neurons, with consequences during normal and pathophysiological cortical network activities.

PubMed Disclaimer

Publication types