Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Jan 6;6(2):786-92.
doi: 10.1096/fasebj.6.2.1537469.

Cytochrome P450 may regulate plasma membrane Ca2+ permeability according to the filling state of the intracellular Ca2+ stores

Affiliations

Cytochrome P450 may regulate plasma membrane Ca2+ permeability according to the filling state of the intracellular Ca2+ stores

J Alvarez et al. FASEB J. .

Abstract

The filling state of the intracellular Ca2+ stores of rat thymocytes regulates plasma membrane permeability to Mn2+, used here as a Ca2+ surrogate for plasma membrane Ca2+ channels. Emptying of the Ca2+ stores accelerated Mn2+ entry about 10-fold, and refilling with Ca2+ restored low Mn2+ permeability. The acceleration of Mn2+ entry observed in cells with empty intracellular Ca2+ stores was prevented by cytochrome P450 inhibitors. Imidazole antimycotics, especially econazole and miconazole, were the most potent inhibitors (IC50 approximately equal to 10(-6) M). The inhibitor sensitivity profile was similar to IA-type cytochrome P450. Calmodulin antagonists increased the plasma membrane permeability to Mn2+ in cells with filled Ca2+ stores, and this effect was also blocked by imidazole antimycotics. On this basis, we propose a model in which activation of a cytochrome P450, situated at the Ca2+ stores, opens a plasma membrane Ca2+ pathway. This activity would be inhibited by Ca2+ inside the stores by a calmodulin-dependent mechanism.

PubMed Disclaimer

Publication types

LinkOut - more resources