Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jan;19(1):237-54.
doi: 10.1210/me.2003-0473. Epub 2004 Sep 16.

Synergy between activin A and gonadotropin-releasing hormone in transcriptional activation of the rat follicle-stimulating hormone-beta gene

Affiliations

Synergy between activin A and gonadotropin-releasing hormone in transcriptional activation of the rat follicle-stimulating hormone-beta gene

Susan J Gregory et al. Mol Endocrinol. 2005 Jan.

Abstract

Both activin and GnRH can independently stimulate expression of the FSHbeta subunit gene. In this study, we used the gonadotrope-derived LbetaT2 cell line to investigate the potential interaction between activin and GnRH in regulating the transcriptional activity of the rat FSHbeta gene promoter. Activin A and GnRH synergistically enhanced rat FSHbeta transcriptional activity. Overexpression of SMAD3 (mediator of decapentaplegic-related protein 3), but not of SMAD2, increased transcriptional activation of the rat (r) FSHbeta gene promoter, which was further enhanced by the combined overexpression of SMAD3 and 4 (3+4). The stimulatory effects of SMAD3 overexpression were localized to -472/-256 of the rFSHbeta gene promoter, and activin- and GnRH-responsive proteins were shown to bind to region -284/-252. Sequence analysis identified a consensus palindromic SMAD-binding site at -266/-259 of the rFSHbeta gene promoter. Mutation of two bases located in the center of this palindrome effectively abrogated SMAD4 binding, markedly reduced SMAD3 and 3+4 stimulation of the rFSHbeta gene promoter, and significantly decreased the synergistic enhancement of promoter activity by both activin A and GnRH, and SMAD3 and GnRH. Blockade of the MAPK-signaling pathway did not significantly affect the response to combined stimulation with activin and GnRH. In contrast, interference with SMAD3 signaling caused a significant reduction in activin and GnRH synergy. The results indicate that SMAD3 plays an important role in the synergistic effects of activin and GnRH and demonstrate that this synergy is mediated by a palindromic cis-element located at -266/-259 of the rFSHbeta gene promoter.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources